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ABSTRACT 

A class of m generation models based on 

SU(N+m) 4 SU(N+m) Extended Technicolor groups and SU (N) 

Technicolor groups is discussed. Under certain conditions 

the models admit hermitian mass matrices in the up and down 

quark sectors and give acceptable quark masses and 

acceptable weak mixing angles. The DOB0 mixing in these 

models is well below experimental limits due to a new 

suppression mechanism which is discussed in detail. The 

models accommodate weak CP violation and have a strong CP 

angle which is naturally small. They fail however to 

account for the smallness of the aoK mixing. 
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The calculation of the weak mixing angles and of the 

quark and lepton masses remains as one of the most 

outstanding challenges for theoretical particle physicists. 

In the otherwise successful standard model fermion masses 

are represented by arbitrary fermion-Higgs Yukawa couplings, 

and consequently their values are put by hand. In this 

situation the scheme of dynamical symmetry 1 breaking in 

which the elementary Higgs scalars are replaced by composite 

ones remains as an interesting alternative. In addition to 

solving the Gauge Hierarchy Problem, which plagues the 

theories with elementary scalars, it offers the possibility 

of the calculation of quark and lepton masses and of weak 

mixing angles in terms of a few gauge coupling constants. 

A concrete realization of these ideas are the Extended 

Technicolor models 2. in which the gauge symmetry group is 

su(3)c B su(21L Q u(Uy Q GETC r (1) 
where the first three factors constitute the standard model 

and GETC denotes an extended technicolor gauge group. These 

models contain a set of new heavy (O(1 TeV)) fermions 

(technifermions) which are put together with the standard 

quarks and leptons into representations of GETC. The group 

G ' ETC Is assumed to be spontaneously broken at a scale 

O(lO-100TeV) down to a Technicolor group3 GTC, under which 

the technifermions transform nontrivially but the standard 

fermions are singlets. The group GTC is chosen to be 
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asymptotically free with a coupling which becomes strong at 

a scale 0 (1TeV). This strongly interacting system of 

technifermions replaces the standard Higgs system and when 

the SU(2)L @ U(l)y quantum numbers of technifermions are 

properly chosen the breakdown of weak gauge symmetries with 

the usual weak gauge boson mass spectrum and the relation 

MW=Mz cosOw can be achieved. 

The current quark and lepton masses in these models are 

generated through diagrams like the one shown in Fig. 1. 

a crude approximation one finds 

3 
2 'TC 

mf = 'ETC 2 
2METC 

In 

(2) 

where uTC is fixed by the W+ gauge boson masses and METC is 

the mass of a heavy ETC gauge boson (shown in Fig. 1) which 

couples fermions to technifermions. For 51ETC d- O(l) r 

'TC = 400 GeV and METC = lo-100 TeV the known quark and 

lepton masses can be obtained. Unfortunately in addition to 

the ETC gauge bosons of Fig. 1, there exist in the models in 

question heavy neutral ETC gauge bosons which couple the 

standard fermions of the same charge to each other. If the 
4 masses of these gauge bosons are chosen to be equal to the 

masses of the gauge bosons in Fig. 1 then generally a good 

fit to the fermion mass spectrum results in the violation of 

the bounds on flavor changing neutral (FCN) transitions such 

as K"lio or DOE0 mixing by several orders of magnitude. 
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Generally however the masses of these two sets of ETC 

gauge bosons are different and this difference depends on 

the breaking pattern of the GETC group. The art of the ElC 

game is then to find a breaking pattern of the GETC group 

(and the fermion representations under GETC) which on one 

hand would give the correct fermion spectrum through the 

formulae like (2) and on the other hand would not lead to 

the violation of experimental bounds on the rare processes. 

In the literature the only explicit study of these 

questions has been done by Ellis and Sikivie' in the context 

of a two generation model based on an SU(7)ETC group broken 

by a set of Higgs scalars down to O(5)TC. It has been found 

that the model while giving an acceptable quark mass 

spectrum and the correct value of the Cabibbo angle 

i) fails to account for the smallness of the K°KO 

mixing by two orders of magnitude, 

ii) predicts the DODO mixing which is on the 

borderline of phenomenological acceptability, and 

iii) having a non-hermitian down quark matrix suffers 

from a strong CP problem. 

Ellis and Sikivie suggested however that a model with 

hermitian mass matrices in the up and down quark sectors 

could have a good chance to simultaneously solve the 

problems i) and iii). Motivated by this suggestion we have 

constructed a class of ETC models which under certain 

conditions admit hermitian mass matrices in the up and down 
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quark sectors. 

The Models 

We shall consider gauge theories based on the symmetry 

gKOUp Of Eq. (1) with GETC=[SU(N+m)8SU(N+m) lETC, which is 

brbken to the technicolor group GTC=SU(N)TC. Here m is the 

number of light fermion generations. 

The fermion representations are given as follows 

(3,2,$,N+m,llL 
= (::;:i ::y) 

(3,1,$,N+m,l)H = (t',il tURal) 

(3,1,-+,l,N+m)H = (b,& id,,)) I (3) 

where i=l...N, a=l...m and the capital and small letters 

denote techniquarks and quarks respectively. 

The models we consider are not realistic because they 

contain only quarks. Furthermore, with the representations 

of Eq. (3), the models contain anomalies involving the 

hypercharge Y which will be cancelled after the introduction 

of leptons, and there exist also ETC anomalies which can be 

cancelled by the introduction of additional heavy color 

singlet fermions. We ignore all these problems as our prime 

interest is to investigate the question of quark masses and 

mixing angles in conjunction with FCN currents and CP 

violation. 
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The breakdown of SU(N+m) @ SU(N+m) down to SU(N) can be 

accomplished by m(N+m,l) Higgs representations Ha, m(l,N+m) 

representations Hd,, (a,a=l...m), and one (N+m, N+m) 

representation G which develop the following vacuum 

expectation values: 

N N 

Ha = H; = (4) 

and 

(5) 

For the moment, all the vacuum expectations values are 

complex. 

It should be emphasized that the Higgs scalars 

considered here are chosen to be singlets under SU(2)L which 

implies that their direct Yukawa couplings to fermions are 

forbidden by the SU(2) L symmetry. Consequently, the fermion 

current masses are generated only by the ETC mechanism. In 

other words, the only role of the Higgs system introduced 

here is to cause the breakdown of the ETC group. 
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In a more dynamical scheme (e.g. "tumbling"), 6 the 

vacuum expectation values in Ws. (4) and (5) could in 

principle be calculable, but here they will be regarded as 

free parameters. Except for the gauge couplings these are 

the only free parameters of the theories considered here. 

Specifying these vacuum expectation values specifies 

simultaneously the masses of the gauge bosons which mediate 

rare processes and the masses of those bosons which 

contribute to fermion masses. 

In what follows it will be useful to introduce 

following variables, 

zij = ; q$; , j,i = l...m 
a=1 

Xf = Zii + Iail 

the 

(6) 

(7) 

and the variables XE' and Z!. with $T replaced by @?I. 
13 1 Note 

that the following inequality exists: 

z2 <z z ij - ii jj (8) 



-8- FEHMILAB-Pub-82/45-THY 

Quark Masses 

The (mass) 2 matrix for the ETC gauge bosons which 

couple quarks to techniquarks can be written as follows 

V;AabV; + SuB i & + vat si 1 a8 8 (9) 
where VT(Vk) and Sq(Sk) stand fOK the gauge bsons 

corresponding to lowering (raising) operators for the two 

unitary gKOUpS respectively. Here i,j=l ,. . .N and 

a,u=l,...m. The matrices A, B and C have the following 

properties 

A = A+ B = B+ c = CT. (10) 

and in terms of the vacuum expectation values Xi, Z.., XF', 
13 

Z! ij and v they are given as follows 

2 Afi = giTc(X:+v2) ; Aij = gETcZij(i#j) (11) 
and 

cii = 2 * 
-2gETCaiV : c.. 

13 
= 0 (ifj) (12) 

where i,j=l...m. The matrix B is obtained from the matrix A 

by making the replacement X1 -t Xi' and Z.. + Z! We have 
11 lj. 

assumed here that the coupling constants gETC are equal fOK 

the two SU(N+m) groups. Even if they are not equal they 

cancel completely in the quark mass matrix. 

The four-fermion interaction mediated by the gauge 

bisons V: and Sf is then, 
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2 12 
4F 

= z gETC (J;uPabJ;u + JTpRaBJ; 
+ J" i,,R;bJ;u) + h.c., 

where J? l!J and J 8 i,, denote the currents to which the gauge 

bosons VT and Sf couple respectively. (We drop the term 

J;,J;u as it does not contribute to fermion masses.) The 

matrices P and R are given as follows: 

and 

P = [A - CB-lC*]-l 

R = [C* - BC-lA]-'. 

(14) 

(15) 

Finally, in accordance with the fermion representations 

(3), we have the currents, 

Ja iu = caYJJi + iLaYpDLi, (16) 

and 

Ja 
iv = dRaypDRi. 

In OKdeK to find the quark mass matrices we insert these 

currents into Eq. (13), perform a Fiers transformation and 

use the relation 

c6 iLUiR> = <ij. iLDiR 
13 

' = 2 UTC - (17) 

We find 
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Md = 2 gETC R I.& Mu = giTc P L&- (1’3) 

where Md and Mu are defined to be the coefficients of 'RdL 
and ii u R L respectively. It follows then from Eqs. (lo), (14) 

and (15) that Mu is hermitian but Md is generally neither 

hermitian nor symmetric. 7 However if 

c = c* and A=B (19) 

then Md is hermitian. We shall discuss the implications of 

these properties at the end of the paper. 

We should also remark that the real parts of the mass 

matrices in Eq. (18) are the same as in Ref. 5. The 

imaginary parts are however completely different which has 

important consequences for the CP violation. Also the FCN 

currents in our model turn out to be different from those in 

the model of Ref. 5. 

We have compared the formulae (18) with the 

"experimentally" known quark masses for the case of N=2 and 

two (m=2) generations. (Here we have taken the matrix A to 

be equal to the matrix B and have put all phases to zero.) 

A reasonable fit is obtained with 

a1 = 12.4 TeV Dl = 43.8 TeV 

a2 = -1.7 TeV D2 = 14.9 TeV 

V = 5.9 TeV Z12 = Dl'D2 (20) 

where D. 1 E Jzii. These parameters give 
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m m = -122 MeV C = 1.25 GeV m 
U 

= 28 MeV S 

md = 7 MeV sinec = 0.21 . (21) 

The corresponding fit for three (m=3) generations is 

obtained with the parameters 

al = 3.0 TeV Dl = 9.85 TeV 

a2 = 18.4 TeV D2 = 67.2 TeV 

a3 = -1.65 TeV D3 = 20.3 TeV 

V = -4.5 TeV Z ij = Di'D. 
1 

These parameters give 

(22) 

mt = 7.2 GeV mC = 1.3 GeV 
?I 

= 12 MeV 

m b = -6.0 GeV mS = 83 MeV rnd = -1.8 MeV 

sine1 = 0.13 . (23) 

where 61 is the mixing angle which replaces fJCabibbo in the 

KM matrix. 8 

To obtain the values in Eqs. (21) and (23) uTc=400 GeV 

has been used. FOK GTC=SU (2) , this value corresponds to 

MW=80 GeV. The sign's of the masses will be discussed later. 

The quark mass matrices, Mu and Md, are singular when 

det A=O. When 
zij'D'D" 1 3 as required by our best fit,' the 

determinant of A is proportional to the small parameters aj 

and hence the mass matrices are near this singularity. 

Hence it is possible to obtain acceptable light quark masses 

with relatively large values for the parameters Di. 5 
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We note that the models are not able to reproduce all 

of the masses exactly. In particular, the mass of the top 

quark is too small. We have found that requiring 

mt > 20 GeV worsens the fit for the masses of the lighter 

quarks and the value of the Cabbibo angle. 

The mass spectra in Eqs. (21) and (23) are however 

close enough to the experimental values that an analysis of 

R°KO mixing and ZiODO mixing makes sense. MOKeOVeK, 

radiative corrections will alter these masses. 

Flavor-Changing NeUtKSl CUKKentS 

We write an effective Lagrangian for FCN currents in 

the class of models we consider as, 

if. 
IASI=2 = cl(ed) byvd) - 2+c (B)(syyd)2+hc 2 d u5 

. . (24) 

,Ac,=2 = c3(eu) (UY,C) - 2 + h-c. (2%) 
c3 (eu) = C1(B”) + C2(Ou) (25b) 

where Od(EJu) are the sets of angles describing the unitary 

matrices which diagonalize the down (up) quark mass 

matrices. Notice that the two processes are described by 

the same functions Cl and C2 but different angles Bu and Bd. 

In the two generation case BCabbibo = ed-eu. 
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Using the vacuum expectation values of Eqs. (20) and 

(22), we find the following results for the coefficient 

functions Ci, (in units of GeV -2 ): 

c1(ed)=3~10 -lo ~~(e~)=i~lo-~~ c3(eu)=2~10 -13 
(26) 

for the two generation model and 

cl(ed)=8x10 -11 c2(ed)=3x10-l1 c3 (eu)=7xio-14 (27) 

for the three generation model. 

The coefficients Cl(Sd) and C2(ed) in our models are 

somewhat smaller than the ones found in the model of Ellis 

and Sikivie, yet our models still fail to account fOK the 

smallness of the E°Ko mixing by two orders of magnitude. We - 

find however that the contribution of the ETC gauge boson 

exchanges to the DObO mixing is two orders of magnitude 

smaller than the one in the model of Ref. 5 and consequently 

it is well below the experimental limits. 

This suppression of the ETC contributions to the DOfiO 

mixing can be easily understood in the following way. In 

the two generation model, the functions Cl and C2, defined 

in Eqs. (24) and (25), have a simple dependence on the 

mixing angles ed and Bu, 

ci(e) = aicOs 48 + Bisin 48 + yi . (28) 

The coefficients ai, Bi' Yi depend in a complicated, (but 
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calculable), way on the Higgs vacuum expectation values. An 

estimate of the order of magnitude for FCN currents gives 

ci=10-8 GeV2. If ed and 8 were not related to the 
U 

coefficients ai, Bi and y i any suppression of FCN currents 

would be purely accidental. However, these angles are 

determined by the same vacuum expectation values and 

therefore it is possible that ed or eu minimizes the 

coefficients C 1 and C2. That is exactly what happens for the 

AC=2 processes in the limit where ai:Xri as x goes to zero 

with Kit zij, and v held fixed. In this limit we find that 

8,, approaches the angles 8l and e2 which minimize the 

,ively: functions C,(O) and C2 (8) respect 

tan(28l) q tan(2e2) = tan(2eu) 

The angle ed however is different, 

tan(2ed) 1 2z12(a2Zll+alZ22) . 
a2Zfl-alZi2+(al-a2) Zf2 

(29) 

(38) 

In the same limit,l' the coefficient functions approach 

their minima: 

cl(eu) = 
Zf2 (al-a2) 2 

2 2[(z11-z;2)2+4z~2(z11+z22)21 
= - c2(eu). (31) 

We conclude that in this limit cl(eu) and c2(eu) are 
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suppressed by two powers of A, whereas the Cabbibo angle, 

(e,-ed), goes to a non-zero value. This is the same 

suppression as was found in Ref. 5. In our model, there is 

however a second surprise: the two vector coefficients Cl 

and C2 of the AC=2 neutral currents cancel to leading order 

in X. Expanding to higher order, we find that their sum, the 

AC=2 neutral current, vanishes as X4. 

The suppression can be understood as follows. Consider 

first the extreme limit ai=O. In that limit the matrices mu 

and 2 (see Eq. 6) can be diagonalised simultaneously. The 

horizontal gauge boson (mass) 2 -matrix is given by: 

(M2) ab = Tr XaXbZ (32) 

where Aa are the generators of the (broken) horizontal 

symmetries. A convenient basis for our purpose is to choose 

the off-diagonal generators as raising OK lowering operators 

working on the generations of quarks. Because Z is diagonal 

all matrix elements of M2 vanish, except when both ha and Xb 

are diagonal, OK when X b is a raising operator and Xa the 

corresponding lowering operator. This property is preserved 

when the matrix is inverted. To get a AC=2 term a 

raising-raising matrix element is needed in the inverse of 

M2, and since it is absent there are no AC=2 processes in 

this limit. 

One may wonder why these arguments are restricted to 

the up quarks. The reason is that if ai= the down-quark 

masses are all zero, and theKefOKe strangeness and AS=2 
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processes are not defined. FOK any infinitisimal value of 

the ais, strangeness will correspond to some direction which 

is not related to the matrix 2. This explains why on the 

one hand the Cabbibo-angle is a free parameter, but on the 

other hand as discussed below the AS=2 processes are not 

suppressed unless ec=O. 

When ai is unequal to zero, the AC=2 current appears 

with some power of ai. To determine this power we treat 

these vev's as a small perturbation. Since we have 

diagonalised the matrix Z we can no longer assume that the 

matrix G (Eq. 5) is diagonal. In general the m x m block of 

this matrix in generation space will be some non-diagonal 

matrix which we will call a. The two SU(N+m) groups operate 

a+Ua 
* 

a+aU (33) 

where U is a unitary matK 

first SU(N+m) 

second SU(N+m) 

ix. Because of th .is transformation 

property, the contribution of the matrix a to the horizontal 

gauge boson masses is : 

on this matrix in the following way: 

Add vv = A(M2)zL = TK XaXbaa + 

A(M )z," = Am: = Tr Aaa(-Xb*)a+ 

(34) 

(35) 

where M& and Mis are the mass-matrices for the gauge bosons 

of the first and second ETC group respectively and M&, is 
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the mixing term. The lowest order contribution to AC=2 

processes is shown in Fig. 2. This diagram can only be 

non-vanishing if the perturbation can couple two identical 

raising operators. However, 2 ab A(M )vv vanishes if Xa and Ab 

are identical raising operators, because in the fundamental 

representation the product of two such operators is zero. 

The mixing term (Eq. 35) does have raising-raising 

couplings, but since the gauge boson S does not couple 

directly to up quarks, the lowest order diagram which can 

contribute is the one in Fig. 3. Since A(M)& is of order 

A2 , this diagram is of OKdeK x4. Because the matrix a is not 

diagonal A(M)& has matrix elements between diagonal and 

off-diagonal generators, but they too can only contribute in 

second order, through diagrams like Fig. 3. 

The choice of the representations used to break the ETC 

group is very important for this suppression mechanism. FOK 

example, the square of a raising operator vanishes only in 

the fundamental representation. Since this fact is crucial 

to make the diagram of Fig. 2 vanish, we expect the 

suppression to be only by two powers of A if the 

representation (N+m, N+m) is changed. The same is true fOK 

the breaking of SU(N+m) to SU(N). For example, if this 

breaking is due to symmetric tensors instead of vectors, the 

suppression disappears. 

Although in our fits of Eqs. 20 and 22 the values of ai 

are not extremely small they are substantially smaller than 

the values of Di and hence our suppression mechanism is 
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effective. In the case of AS=2 processes, the suppression 

mechanism discussed above cannot work because if Bu already 

minimizes the coefficient functions Ci, Od cannot minimize 

these same coefficient functions if the Cabibbo angle is to 

be non-zero. Furthermore, there is no cancellation between 

Cl(8,) and C2(8,) since they multiply different operators. 

Hence in our model, the AS=2 processes are suppressed only 

by two powers of Bc, which is not sufficient to agree with 

the experimental results. 

Since our models are so successful in suppressing the 

DODO mixing for which the experimental bounds are less 

stringent than for K"iio mixing the possibility appears that 

by interchanging the assignment of right-handed up and down 

quarks in Eq. (3) we could suppress sufficiently the K°KO 

mixing while still be consistent with the DoDo mixing. 

This is unfortunately impossible because of the 

following bound, which can be derived from Eqs. (ll), (121, 

(14), and (15): 

det MU 
det Md = 

_ det B 
det C* 

(36) 

ldet BI 2 ldet C*/ 

and therefore ldetM,I ) ldetMdl, as observed 

experimentally. This bound clearly does not allow the 

opposite assignments of the up and down sectors. 
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We should also remark that in addition to the heavy ETC 

gauge bosons there exist also in ETC models light neutral 

pseudo-Goldstone bosons which mediate FCN processes. 

However if all quarks of the same charge get their masses 

from the same technifermion condensates (monophagy)" the 

flavor changing couplings of these pseudo-scalars to the 

quarks are only O(g2 rnz/G)12 instead of O(g mf/MW) and the 

relevant transitions can be suppressed below the 

experimental limits. 

CP Violation - 

Finally we would like to discuss the question of strong 

and weak CP violation in our models. 

The source of CP-violation is the Higgs-system that 

breaks GETC' All CP-violating e-parameters of GETC and QCD 

can be set to zero by axial U(l)-rotations. We will assume 

that the TC and QCD vacua do not break CP. Then all phases 

in the quark masses are due to phases in the 

Higgs-Lagrangian. We will not try to explain the origin of 

these phases nor their magnitude, but we will only 

investigate whether it is possible to make them appear in 

the weak interactions, but not in the strong interactions. 

The criterion for the absence of a contribution to the 

e-parameters of QCD is 

arg[det(MuMd)] = 0 . (37) 

Because MU is hermitian, arg det(MU) is 0 or r. Using 
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(Eq. 15) we derive 

arg(det Md) = arg det C (mod IT) . (38) 

Therefore, to satisfy Eq. (38), det C must be real, and have 

the right sign to make det(MUMd)>O. 

Notice that the phases of the matrices A and B of 

Eq. (9) do not affect the strong interactions. Therefore, 

by making C real and A, B complex we may have a chance to 

achieve our goal. 

The phase of C is proportional to the phase of v. 

There are now two possibilities: 

(i) The phase of v is not determined by the Higgs 

potential. This means that all vacua with 

different phases of v are equivalent; the 

Higgs-Lagrangian must then have had a 

U(l)-symmetry which was spontaneously broken. 

Consequently there must be a (pseudo) Goldstone 

boson. 

(ii) The Higgs potential determines the phase of v. 

Then we have to make sure that C is real by 

imposing a symmetry on the Higgs-system. The 

matrix C may still have the wrong sign; if the 

number of generations is odd this can be cured by 

changing the signs of some parameters so that v 

changes sign. If the number of generations is 

even this does not work. Indeed in our two 

generation model, we find sgn(det Ma) = -1. This 
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relative minus sign cannot be removed by changing 

the signs of the parameters. In the three 

generation case, however, we can define the 

parameters such that sgn(det Md) = 1. A discrete 

symmetry which seems suitable is interchange of 

Ha and HA and replacement of G by its hermitian 

conjugate. This symmetry implies that Eq. (19) 

is satisfied, if it is a symmetry of the vacuum. 

Then the down quark mass matrix is hermitian. 

Now we have to investigate if higher order corrections 

respect this hermiticity. It can be shown easily that if 

there is no mixing between gauge bosons with vector 

couplings to all quarks and gauge bosons with axial vector 

couplings to all quarks, only hermitian mass matrices can be 

generated. In our model, the bosons $+S; h ave vector 

couplings, whereas the bosons <'-ST have a vector coupling 

to up-quarks and an axial vector coupling to down quarks. 

If Eq. (19) is satisfied these bosons do not mix. Therefore 

ma is hermitian in the absence of up quarks, but hermiticity 

is broken by diagrams with up-quark loops. These diagrams 

are suppressed by at least two powers of uTG/METc. 

In addition to this, the discrete symmetry is broken 

because Ha and H; couple to different gauge bosons (V and S 

respectively) which in turn couple to different quarks. 

Even if the coupling constants for S and V gauge bosons are 

equal at the scale A T'C at which GETC is broken, symmetry 
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breaking terms of order giTC(ATIC) are generated, which will 

induce a phase in the mass-matrix. Because ATIC is a few 

orders of magnitude larger than the technicolor scale, at 

which gETC is large, such diagrams are suppressed. But 

unless there is an unexpected cancellation this effect 

appears to be too large to be acceptable. Nevertheless the 

induced e-parameter is small in this model, and further 

improvement may be possible. 

In summary we have presented in this paper a class of m 

generation models based on [SU(N+m) @ SU(N+m)lETC extended 

technicolor groups which are spontaneously broken down to 

SU W) TC. These models while giving an acceptable quark mass 

spectrum, acceptable values of weak mixing angles, and 

having (under certain conditions) hermitian mass matrices in 

the up and down quark sectors 

i) still fail to account for the smallness of the 

R°Ko mixing by two orders of magnitude. - 

However in these models 

ii) the contribution of the ETC gauge boson exchanges 

to the Dono mixing is found to be two orders of 

magnitude smaller than the one in the model of 

Ellis and Sikivie5 and 

iii) the strong CP problem is "almost" solved, because 

weak CP violation can be introduced, while strong 

CP violation is naturally suppressed. 



-23- FERMILAB-Pub-82/45-THY 

We hope that our findings in connection with the 

suppression of D"i5' mixing and the question of the strong CP 

problem turn out to be useful in a search for a realistic 

model with dynamical symmetry breaking. 

While completing this paper we have received a preprint 

by Masiero, Papantonopoulos and Yanagida. 13 These authors in 

accordance with our results find that breaking the GETC 

group by scalars in the fundamental representation implies 

the absence of tree level FCN currents in purely hadronic 

and leptonic processes. The models discussed in Ref. 13 are 

however different from ours. 

It is a pleasure to thank E. Eichten for reading the 

manuscript and several illuminating discussions. We also 

thank V. Baluni and K. Lane for interesting conversations. 
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FIGURE CAPTIONS 

Fig. 1. The mechanism for light fermion mass generation 

through the exchange of a heavy ETC boson which 

couples a fermion f to a technifermion F. 

Fig. 2. The lowest order diagram which can contribute to 

AC=2 processes. The X indicates that the diagram is 

proportional to (AMab)-2 vv - As explained in the text, 

this diagram vanishes. 

Fig. 3. The second order contribution to AC=2 processes. 

The X's indicate mixing between the massive ETC V 

and S bosons. 
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